LECTURE 5 — FROM PREDICTIONS
TO PRESCRIPTIONS

- Universal Al

Opportunity

* Availability of data (often big data) in electronic form.
* Can we develop a theory that unifies OR/MS and
ML/S that goes:

From data to prescriptions?




A Real World Problem

* A Global Fortune 100 multimedia company.
* 1 billion units of entertainment media shipped per year
* Sells 1/2 million different titles on

CD/DVD/Bluray at over 50,000

retailers worldwide

Key Issues

* Limited shelf space at retail
locations

* Huge array of potential titles

* Highly uncertain demand for
new releases

* Which titles to order and in
what quantities?

* Maximize number media sold




Internal Company Data

 Sales by item/location, 2010 to present

* ~50GB after aggregating transaction records by week
%,

wl Percentage of all sales in Berlin
for 13 titles from the point of
%\ release to home entertainment
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Internal Company Data

 Sales by item/location, 2010 to present
* ~50GB after aggregating transaction records by week

* Location info:

— Address
* Google Geocoding API

* |tem info:
— Medium (DVD/BLU)
— Obfuscated title

* Disambiguation

Universal Al




Beyond internal company data:
Harvesting public data (more X)

Movie/series

Actors (find actor communities; Blondel et al 2008)

Plot summary (cosine similarities, hierarchically clustered)
Box office gross, US

Oscar wins and nominations and other awards
Professional (meta-)ratings, user ratings

Num of user ratings

Genre (can be multiple)

MPAA rating
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Beyond internal company data:
Harvesting public data
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Beyond internal company data:
Harvesting public data

“Skyfall” vs “@” #

theaters
November 2012
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Predicting Demand

* Random forest * New titles:
regressor out-of-sample /2 = 0.67
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Problem

Maximize number of items sold.
Focus on video media, Europe

Suppose we order z=10 DVDs and the demand is y=6
How many do we sell?

Suppose we order z=6 DVDs and the demand is y=9.
How many do we sell?

Formula: Number of DVDs sold: min (y,z)

Problem

Maximize number of items sold.

Focus on video media, Europe

r index locations, t index periods, j index products.
Y, demand for j, Zyy order, x,, auxiliary data.

d
max [ [Z min {Yj, zer;} ‘X = xtr]

J=1

d
s.t. sz- <K,




The general problem

* Data yl, P yN on quantities of interest Y
E.g. demand for movies
1 N . .
e DataX ', ..., I on associated covariates X

E.g. prior sales, google trends

* Decision z, how many DVDs to order to maximize
total sales
— Formally: max E[c(Y, z)|X]
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Solution Approach

* Bertsimas and Kallus (2016) have developed
a general methodology to address the problem.

= Key idea From Predictions to Prescriptions.

= Shown that the method is asymptotically optimal, that is
As the amount of data increases, approach is stronger.

= Analogous to R square in prediction, we defined

P coefficient of prescriptiveness.
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Existing Approaches

* Predict first, optimize second.
Predict y(x,z)
Optimize C(y(x,z), z)

Issue: variability not taken into account

Predict first, optimize second.
Optimize 1/N Sum C(y/, z)

Issue: Does not address predictability
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kNN

2ANN (1) € arg min Z c(z;:y")
zEZ
z* is kNN of z
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RQ:{a?:acl>5,m2§1} Ry ={x:21 >5,29 > 1}
5 10

Implied binning rule R(x) = (j s.t. z € R;)

S (@) eargmin Y ez
R(z*)=R(x)
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Random Forest

* Train T trees on bootstrapped samples and
randomly selected feature subsets

s Get Tbinning rules Rt( )= (j s.t. x € RY)

2RF

) € arg min c(z;y")
3 R =T e,
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Value of a Prescription

* Coefficient of Prescriptiveness

N N
min » ¢(z;y') — > c(En(z");y")
zEZ “ -
P = 1=1 1=1 S 1
. al i a . i — [O’ 1]
min 2 c(zy') — ;2%12 c(z;9")

* Measures the prescriptive value of X
and of the prescription trained

e Contrast with R2.
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Back to the media Example

= Proposed Approach improved profitability in

= P ranged from 0.8 to 0.92 in various European stores.

the European stores by 12%
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Conclusions

A new framework from predictions to prescriptions
— General purpose

Theory

— Computational tractability

— Asymptotic optimality

Performance metric

— Coefficient of prescriptiveness

Practice

— Material Improvement for a Fortune 100 company
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