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LECTURE 4: CUSTOMER

SEGMENTATION
Clustering

Universal AI

Customer Segmentation: Airline

Universal AI 1

• Who’s flying next Monday?

• Who’s flying this weekend?

• Who’s flying for Thanksgiving?

• Let’s think about it from an airline’s perspective:
• What different types of  customers might the airline have?

• How many types are enough to capture customer behavior?

• How might the airline market differently to different customer types?

• Airlines have access to massive data from frequent flyer program 
and global distribution systems to answer such questions
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Customer Segmentation: Automobile

Universal AI 2

• Consider an automobile manufacturer that collects information 
about customers’ preferences for their automobile purchases:
• What different types of  customers might the auto manufacturer have?
• How many types are enough to capture customer behavior?
• How might the manufacturer target different customer types?

• Auto manufacturer can leverage data from past sales and 
customer surveys to answer such questions

Customer Segmentation

Universal AI 3

• Segmentation: subdivision of  customers into a relatively small 
number of  groups that share similar characteristics

→ Analytics to divide the market into meaningful and 
measurable segments according to customers’ needs, past 
behaviors, and demographic profiles 

→ Targeted marketing: design of  tailored products/promotions/ 
services to meet customer needs within each segment
• E-commerce has enabled much more prevalent and personalized use 

of  customer segmentation and targeted marketing

→ Moving from “one size fits all” offerings for competitive edge
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Data and Visualization

Universal AI 4

Airline Customer Data

Universal AI 5

• Data on 3,999 customers obtained from the loyalty program 
of  a former airline

• Six numerical values describing customers:
• Number of  miles eligible for award travel from historical activity

• Number of  non-flight bonus transactions in the past 12 months

• Number of  miles earned from non-flight bonus transactions in the 
past 12 months

• Number of  flight miles in the past 12 months

• Number of  flight transactions in the past 12 months

• Tenure in the loyalty program (days)
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Airline Customer Data

Universal AI 6

𝒏: # of observations (𝒏 = 𝟑, 𝟗𝟗𝟗)

𝒏 = 𝟑, 𝟗𝟗𝟗

Balance BonusMiles BonusTrans FlightMiles FlightTrans DaysSinceEnroll
1      48296      31329          9         500           1            3061
2      10021          0          0           0           0            7879
3      49280      22370         16           0           0            3312
4     213539       2750         15           0           0            4751
5     125465      14750          9           0           0            7206
6       7698          0          0           0           0            1734
7     201259      40755         34           0           0            3398
8     350608      50988         26        2643           5            3630
9     146232      83783         19         375           1            3566
10      2080          0          0           0           0            4635
11     93971      62023         22         450           3            4580
12     20999      15914         13           0           0            6206
13     15832       8130         20         500           1            1698
14    207021       3600          4         100           1            5412
15     31504       7358          2           0           0            1022
16     27619      83726         68       14050          46            1325
...      ...        ...        ...         ...         ...             ...
3995    3016          0          0           0           0            1398
3996   28577      48564         14           0           0            3586
3997  276571      42044         23           0           0            7872
3998   28848          0          0           0           0            3069
3999   96522      61105         19           0           0            6924

What is Different from Before?

Universal AI 7

• So far, we have seen dataset with a dependent variable that we are 
trying to predict as a function of  independent variables
• These are called supervised learning problems

• In segmentation, there is no dependent variable to predict; 
instead, we aim to create groups of  “similar” data points
• These are called unsupervised learning problems

• No training/testing split for unsupervised learning
• Without a dependent variable, out-of-sample performance is irrelevant

• Unsupervised learning is used for summary / exploratory analysis

• Unsupervised models are harder to validate and more subjective
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Distances, Clusters, Normalization

Universal AI 8

Mini-dataset

Universal AI 9

• For visualization purposes, let us consider a simple dataset 
with 20 customers and 2 characteristics

●
●

●

●
●

●
●

●
●

●

●●
●

●

●
●

●●
●

●

0

25

50

75

100

0 20 40 60
Time Since Enrolled (months)

Ba
la

nc
e 

(1
,0

00
 m

ile
s)



6

Measuring Distance between 2 Points

Universal AI 10

𝑎2 –  𝑏2
𝑎1 –  𝑏1

x

y

• Clustering relies on the distance between pairs of  observations
• Typically, Euclidean distance (recall the Pythagorean theorem!)

• Can be directly generalized to instances with more variables

Scaling Issues

Universal AI 11

• Issue 1: Hard to compare different units (e.g., days vs. miles)

• Issue 2: Distance primarily driven by the variables of  larger scale

• Issue 3: The distance metric is sensitive to the choice of  units
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Normalization

Universal AI 12

• Normalized variables are expressed in terms of  “number of  
standard deviations from mean”

Original Data

[For example, 0.71 = ( 60 – 51.85 )/11.43 ]

Balance 
(1,000 miles)

Tenure
(Months)

Member
Number

44601
46612
48623
44634
46625
……… 
863519
883720

70.9051.85Sample mean
19.8611.43Sample S.D.

Normalized Data
Balance 

(normalized)
Tenure

(normalized)
Member
Number

-1.510.711
-1.250.802
-1.100.893
-1.610.984
-1.300.895
……… 

0.71-1.3019
0.86-1.1220

Plot of  Normalized Mini-dataset

Universal AI 13
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Normalized Airline Customer Data

Universal AI 14

𝒏: # of observations (𝒏 = 𝟑, 𝟗𝟗𝟗)

𝒏 = 𝟑, 𝟗𝟗𝟗

Balance BonusMiles BonusTrans FlightMiles FlightTrans DaysSinceEnroll
1   -0.25       0.59      -0.27        0.03       -0.10           -0.51
2   -0.63      -0.71      -1.21       -0.33       -0.36            1.82
3   -0.24       0.22       0.46       -0.33       -0.36           -0.39
4    1.39      -0.60       0.35       -0.33       -0.36            0.31
5    0.51      -0.10      -0.27       -0.33       -0.36            1.50
6   -0.65      -0.71      -1.21       -0.33       -0.36           -1.15
7    1.27       0.98       2.33       -0.33       -0.36           -0.35
8    2.75       1.40       1.50        1.56        0.96           -0.24
9    0.72       2.76       0.77       -0.06       -0.10           -0.27
10   -0.71      -0.71      -1.21       -0.33       -0.36            0.25
11    0.20       1.86       1.08       -0.01        0.43            0.22
12   -0.52      -0.05       0.15       -0.33       -0.36            1.01
13   -0.57      -0.37       0.87        0.03       -0.10           -1.17
14    1.32      -0.56      -0.79       -0.26       -0.10            0.63
15   -0.42      -0.41      -1.00       -0.33       -0.36           -1.50
16   -0.46       2.76       5.87        9.71       11.76           -1.35

...     ...        ...        ...         ...         ...             ...
3995   -0.70      -0.71      -1.21       -0.33       -0.36           -1.32
3996   -0.45       1.30       0.25       -0.33       -0.36           -0.26
3997    2.01       1.03       1.19       -0.33       -0.36            1.82
3998   -0.44      -0.71      -1.21       -0.33       -0.36           -0.51
3999    0.23       1.82       0.77       -0.33       -0.36            1.36

Method 1. k-Means Clustering
Principles

Universal AI 15
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k-Means Clustering

Universal AI 16

• Select a number of  clusters, denoted by k

• Randomly select k centroid locations
• A “centroid” can be thought of  as a point that is 

“representative” of  each cluster

• A centroid is not necessarily a data point

Set number 
of  clusters

Initialize

Iterate

• Repeat the following two steps, until convergence
• Assign each observation to the nearest centroid

• Recalculate centroids as average of  assigned observations

Terminate • Terminate when no observations get reassigned

1. Select Random Centroid Locations

Universal AI 17
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2a. Assign Observations to Centroids

Universal AI 18
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2b. Recalculate Centroids

Universal AI 19
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2a. Assign Observations to Centroids

Universal AI 20
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2b. Recalculate Centroids

Universal AI 21
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2a. Assign Observations to Centroids

Universal AI 22
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Method 1. k-Means Clustering
Application to Airline Customers Data

Universal AI 23
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Normalized Cluster Centroids

Universal AI 24

• How would you describe these groups of  customers?

• How might we market to these clusters?

ClusterNormalized 
Variable 87654321

0.954.890.95-0.420.180.54-0.16-0.12Balance

1.211.471.11-0.61-0.031.70-0.400.08BonusMiles

3.310.792.20-0.870.550.99-0.360.56BonusTrans

9.840.483.85-0.251.64-0.09-0.22-0.24FlightMiles

8.210.724.37-0.261.69-0.08-0.23-0.27FlightTrans

-0.331.060.50-0.88-0.080.660.95-0.58DaysSinceEnroll

14 76691,1072125041,124893Cluster Size

Clusters 2 and 5

Universal AI 25

• Dormant customers: low-activity customers across the board

→ Promotional one-time events to incentivize new purchases?

ClusterNormalized 
Variable 52

-0.42-0.16Balance

-0.61-0.40BonusMiles

-0.87-0.36BonusTrans

-0.25-0.22FlightMiles

-0.26-0.23FlightTrans

-0.880.95DaysSinceEnroll

1,1071,124Cluster Size

ClusterOriginal
Variable 52

31,16557,207Balance

2,3087,565BonusMiles

38BonusTrans

114147FlightMiles

00FlightTrans

2,3006,074DaysSinceEnroll

1,1071,124Cluster Size
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Clusters 1 and 3

Universal AI 26

• The point addicts: focus on bonus transactions

→ Target bonuses for flying? Special offers for bonus transactions?

ClusterNormalized 
Variable 31

0.54-0.12Balance

1.700.08BonusMiles

0.990.56BonusTrans

-0.09-0.24FlightMiles

-0.08-0.27FlightTrans

0.66-0.58DaysSinceEnroll

504893Cluster Size

ClusterOriginal
Variable 31

127,76161,201Balance

58,15619,073BonusMiles

2117BonusTrans

333118FlightMiles

10FlightTrans

5,4842,923DaysSinceEnroll

504893Cluster Size

Clusters 6 and 7

Universal AI 27

• The old guard: Long-lasting customers with moderate spending

→ Thank for loyalty? Special offers? Refer a friend? 

ClusterNormalized 
Variable 76

0.26-0.35Balance

0.18-0.58BonusMiles

0.46-0.76BonusTrans

-0.18-0.22FlightMiles

-0.19-0.23FlightTrans

1.040.69DaysSinceEnroll

664875Cluster Size

ClusterOriginal
Variable 76

127,76161,201Balance

58,15619,073BonusMiles

2117BonusTrans

333118FlightMiles

10FlightTrans

5,4842,923DaysSinceEnroll

504893Cluster Size
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Clusters 4 and 8

Universal AI 28

• The new oil: Recent customers with very high spend

→ Retain, retain, retain: bonus miles, flying challenges, perks, etc.

ClusterNormalized 
Variable 84

0.950.29Balance

1.210.16BonusMiles

3.310.84BonusTrans

9.841.89FlightMiles

8.211.94FlightTrans

-0.33-0.01DaysSinceEnroll

14 211Cluster Size

ClusterOriginal
Variable 84

168,89791,719Balance

46,30116,360BonusMiles

4317BonusTrans

14,2442,763FlightMiles

328FlightTrans

3,4463,964DaysSinceEnroll

14 211Cluster Size

Method 1. k-Means Clustering
Selecting the Number of  Clusters k

Universal AI 29
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Selecting the Number of  Clusters k

Universal AI 30

• Ideally, the clusters should be homogeneous

• Measure of  cluster dissimilarity: sum of  squared distances of  
each observation from its cluster centroid

• Trade-off  in selecting the number of  clusters k
• Low k: dissimilar customers will be combined into the same cluster, 

leading to heterogeneous clusters

• High k: clusters will be too specific, leading to unactionable clusters—
and we won’t be able to efficiently target clusters

• A scree plot displays the tradeoff  between number of  clusters k
and cluster dissimilarity—in order to find a “sweet spot”
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Scree Plot for Airline Clusters

Universal AI 31

Very dissimilar customers 
combined into same clusters

Similar customers split 
into different clusters

“knee in the curve”
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Method 2. Hierarchical Clustering
Principles

Universal AI 32

Hierarchical Clustering

Universal AI 33

• Start with each observation in its own cluster
→ Initially, as many clusters as data points (3,999 here)

• Iteratively combine the pair of  clusters that are have 
the smallest cluster dissimilarity
• Prefer combining clusters that are “close” to each other

• Prefer combining small clusters instead of  large clusters

→ Number of  clusters goes down by 1 at each iteration

Initialize

Iterate

Terminate
• Ultimately, 1 cluster with all data points

→ Enables to select the appropriate number of  clusters
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Hierarchical Clustering on Mini-dataset

Universal AI 34
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Hierarchical Clustering on Mini-dataset
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Hierarchical Clustering on Mini-dataset

Universal AI 36
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Hierarchical Clustering on Mini-dataset
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Hierarchical Clustering on Mini-dataset

Universal AI 38
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Hierarchical Clustering on Mini-dataset
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Hierarchical Clustering on Mini-dataset

Universal AI 40
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Hierarchical Clustering on Mini-dataset
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Hierarchical Clustering on Mini-dataset

Universal AI 42
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Hierarchical Clustering on Mini-dataset
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Hierarchical Clustering on Mini-dataset

Universal AI 44
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Hierarchical Clustering on Mini-dataset
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Hierarchical Clustering on Mini-dataset

Universal AI 46

●
●
●

●

●

●
●

●

●

●

●●
●

●

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

16

1718

19

20

−1

0

1

−1 0 1
Time Since Enrolled (Normalized)

Ba
la

nc
e 

(N
or

m
al

iz
ed

)

0
1

2
3

4
5

6
7

D
is

si
m

ila
rit

y
1 3 5 7 18 20 19 9 11 104 6 2 15 17 16 8 13 12 14

Dissimilarity 0.397

Hierarchical Clustering on Mini-dataset

Universal AI 47

●
●
●

●

●

●
●

●

●

●

●●
●

●

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

16

1718

19

20

−1

0

1

−1 0 1
Time Since Enrolled (Normalized)

Ba
la

nc
e 

(N
or

m
al

iz
ed

)

0
1

2
3

4
5

6
7

D
is

si
m

ila
rit

y

1 3 5 7 18 20 19 9 11 104 6 2 15 17 16 8 13 12 14

Dissimilarity 0.614



25

Hierarchical Clustering on Mini-dataset

Universal AI 48
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Hierarchical Clustering on Mini-dataset
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Hierarchical Clustering on Mini-dataset
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Use of  Dendogram

Universal AI 54

• Full hierarchy of  clusters, all 
the way to single observations

• Height indicates dissimilarity
• E.g., 3 & 6 are close to each 

other, as are 2 & 7

• Common mistake: the x axis 
does not indicate similarity
• (1 & 4) are far from (3 & 6)

• One can “reconstruct” a 
cluster set for each value of  k
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Method 2. Hierarchical Clustering
Application to Airline Customers Data
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Hierarchical Clusters for Airline Data

Universal AI 56

• Output of  our hierarchical clustering approach with the 
airline customer dataset:
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Scree Plot for Airline Clusters

Universal AI 57

• We will agglomerate any clusters that have dissimilarity 32 or 
smaller, yielding 7 final clusters

Good number—
“scree stays here”
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Dendrogram for Airline Clusters

Universal AI 58
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Normalized Cluster Centroids

Universal AI 59

• How are the clusters from hierarchical clustering similar to or 
different from those obtained with k-means clustering?

ClusterNormalized 
Variable 7654321

3.840.670.090.33-0.30-0.09-0.39Balance

1.540.870.311.16-0.21-0.29-0.61BonusMiles

0.772.350.790.920.27-0.20-0.93BonusTrans

0.725.491.41-0.21-0.27-0.21-0.23FlightMiles

0.905.591.49-0.21-0.29-0.23-0.24FlightTrans

0.900.140.040.16-0.641.18-0.61DaysSinceEnroll

121632717237468331,242Cluster Size
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Clustering Automobile Customers

Universal AI 60

Opinions About Products

Universal AI 61

• We segmented airline customers based on observed behavior 
(bonus transactions, flights, …)

• We can also segment customers (or potential customers) based 
on their stated preferences—that is, what is important to them
→ Design of  targeted advertisements to users with particular preferences

→ Design of  products and services to satisfy customer needs

• Data for such segmentation often comes from surveys
• Pros: they enable to test future and “what if ” scenarios

• Cons: they measure customers’ intentions, not actual behaviors

• We use survey data from a German premium car manufacturer
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Automobile Customer Data

Universal AI 62

• Survey data on 793 customers based on their opinions about a 
variety of  automobile features
• All surveyed customers had purchased a car from the same 

German premium car manufacturer within 3 months

• Ten data fields indicating whether the surveyed customers 
found each of  the following important:
• Driving properties, interior, technology, comfort, reliability, 

handling, power, gas consumption, sportiness, safety

• Data are categorical (binary) here:
• 1 if  the factor was deemed important by the customer, 0 otherwise

Automobile Customer Data

Universal AI 63

𝒏: # of observations (𝒏 = 𝟕𝟗𝟑)

driving_properties interior technology comfort reliability handling power consumption sporty safety
1                    0        0          1       0           1        0     0           0      1      1
2                    1        0          0       0           0        1     0           0      0      1
3                    1        0          0       1           0        0     1           0      1      1
4                    0        1          0       1           1        0     0           0      1      1
5                    0        1          1       1           0        0     0           0      0      0
6                    1        1          1       1           0        0     0           0      1      0
7                    0        0          0       0           0        1     1           0      0      1
8                    1        0          1       0           1        0     0           0      0      1
9                    0        1          1       1           1        0     0           0      0      0
10                   1        0          0       0           1        0     0           0      0      1
11                   1        0          0       0           0        1     0           0      1      1
12                   1        0          0       0           0        0     1           1      1      1
13                   1        0          0       0           0        1     1           0      1      0
14                   1        0          0       0           1        0     1           0      0      1
15                   0        1          0       0           0        0     1           0      0      0
16                   1        0          0       0           1        1     0           0      0      1
...                ...      ...        ...     ...         ...      ...   ...         ...    ...    ...
789                  1        0          1       0           1        0     1           0      0      1
790                  0        0          0       0           0        0     0           0      0      0
791                  1        0          0       0           0        0     1           1      0      1
792                  1        1          0       1           1        1     1           0      1      0
793                  1        0          0       0           0        1     1           0      1      0
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Scree Plot for Automobile Clusters

Universal AI 64

• We will agglomerate any clusters that have dissimilarity 9.4 or 
smaller, yielding 7 final clusters
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Dendrogram: Automobile Customers

Universal AI 65

Cluster 2
(n = 113)

Cluster 3
(n = 208)

Cluster 4
(n = 56)

Cluster 5
(n = 105)

Cluster 6
(n = 78)

Cluster 7
(n = 107)

Cluster 1
(n = 126)
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Cluster Centroids (Not Normalized)

Universal AI 66

Cluster
Variable 7654321

1.000.970.890.610.800.990.20driving_properties

0.610.120.020.710.030.120.25interior

0.910.440.360.350.470.520.34technology

0.800.260.320.820.510.300.11comfort

0.660.400.100.270.530.460.49reliability

0.860.960.300.130.010.210.16handling

0.930.730.430.250.810.410.32power

0.620.090.750.170.180.010.21consumption

0.770.530.250.310.790.210.32sporty

0.790.060.210.350.140.890.38safety

5678105113107126208Cluster Size

The AI Edge

Universal AI 67



35

Clustering & Customer Segmentation

Universal AI 68

• Clustering for customer segmentation is now pervasive
• Better understanding of  key customer types and their prevalence

• Design of  appropriate marketing strategies, tailored to each segment

• Key steps to cluster analysis:
• Aim for data to be compatible in scale through normalization

• Identify relevant clusters with k-means or hierarchical clustering

• Analyze cluster centroids to interpret the type of  customers in each 
cluster and determine appropriate managerial interventions

• Clustering cannot be subject to out-of-sample predictions
→ Reinforced need to engage decision-makers throughout model building

Comparison of  Clustering Methods

Universal AI 69

• k-means & hierarchical clustering often yield consistent insights

• Still, the two methods have different strengths

• Hierarchical clustering
• Flexibility through various distance and cluster dissimilarity metrics
• Amenable to iterative decision making—at various levels of  granularity

• k-means clustering
• Is more computationally efficient—hence scalable to large datasets

• Many modeling questions can have significant impacts on results
• whether to normalize data, how to quantify “distance”, how many 

clusters to use, etc.
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Main R Commands

Universal AI 70

library(flexclust)

airline <- read.csv("AirlinesCluster.csv")

pp <- preProcess(airline, method=c("center", "scale"))

airline.scaled <- predict(pp, airline)

mod <- kmeans(airline.scaled, iter.max=100, 8)

cluster.assignment.kmeans <- mod$cluster

d <- dist(airline.scaled)

mod.hclust <- hclust(d, method="ward.D2")

plot(mod.hclust,labels=F,xlab=NA,ylab="Dissimilarity")

dat.hc.airline <- data.frame(nclust = seq_along(mod.hclust$height),

dissimilarity = rev(mod.hclust$height))

ggplot(dat.hc.airline, aes(x=nclust, y=dissimilarity))+geom_line()

cluster.assignment.hierarchical <- cutree(mod.hclust, 7)

library

k-means

normalization

assignment
hierarchical
clustering
dendogram

scree plot

assignment


