

The Supreme Court
An Introduction to Trees

Universal AI

The American Legal System

- The legal system of the United States operates at the state level and at the federal level
- Federal courts hear cases beyond the scope of state law
- Federal courts are divided into:
 - District Courts
 - · Makes initial decision
 - Circuit Courts
 - · Hears appeals from the district courts
 - Supreme Court
 - Highest level makes final decision

The Supreme Court of the United States

- Consists of nine justices, appointed by the President
 - Justices are distinguished judges, professors of law, state and federal attorneys
- The Supreme Court of the United States (SCOTUS) decides on most difficult and controversial cases
 - Often involve interpretation of Constitution
 - Significant social, political and economic consequences

Universal AI

Notable SCOTUS Decisions

- Wickard v. Filburn (1942)
 - Congress allowed to intervene in industrial/economic activity
- Roe v. Wade (1973)
 - Legalized abortion
- Bush v. Gore (2000)
 - · Decided outcome of presidential election!
- National Federation of Independent Business v. Sebelius (2012)
 - Patient Protection and Affordable Care Act ("ObamaCare") upheld the requirement that individuals must buy health insurance

Predicting Supreme Court Cases

- Legal academics and political scientists regularly make predictions of SCOTUS decisions from detailed studies of cases and individual justices
- In 2002, Andrew Martin, a professor of political science at Washington University in St. Louis, decided to instead predict decisions using a statistical model built from data
- Together with his colleagues, he decided to test this model against a panel of experts

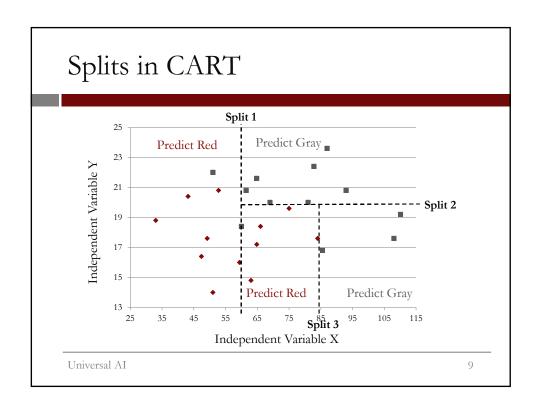
Universal AI

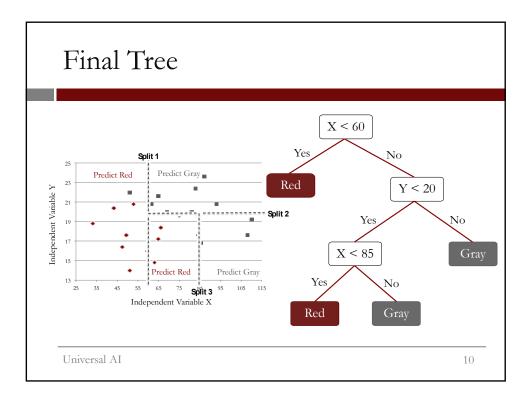
Predicting Supreme Court Cases

- Martin used a method called Classification and Regression Trees (CART)
- Why CART?
 - Other models are generally not interpretable
 - Model coefficients indicate importance and relative effect of variables, but do not give a simple explanation of how decision is made

Data

- Cases from 1994 through 2001
- In this period, same nine justices presided SCOTUS
 - Breyer, Ginsburg, Kennedy, O'Connor, Rehnquist (Chief Justice), Scalia, Souter, Stevens, Thomas
 - Rare data set longest period of time with the same set of justices in over 180 years
- We will focus on predicting Justice Stevens' decisions
 - · Started out moderate, but became more liberal
 - Self-proclaimed conservative


Universal AI 6


Variables

- **Dependent Variable**: Did Justice Stevens vote to reverse the lower court decision? 1 = reverse, 0 = affirm
- Independent Variables: Properties of the case
 - Circuit court of origin (1st 11th, DC, FED)
 - Issue area of case (e.g., civil rights, federal taxation)
 - Type of petitioner, type of respondent (e.g., US, an employer)
 - Ideological direction of lower court decision (conservative or liberal)
 - Whether petitioner argued that a law/practice was unconstitutional

Classification and Regression Trees (CART)

- Build a tree by splitting on independent variables
- To predict the outcome for an observation, follow the splits and at the end, predict the most frequent outcome in the training set
- · Does not assume a linear model
- Interpretable

When Does CART Stop Splitting?

- There are different ways to control how many splits are generated
 - One way is by setting a lower bound for the number of points in each subset
- This parameter is called **minbucket**
 - The smaller it is, the more splits will be generated
 - If it is too small, overfitting will occur
 - If it is too large, model will be too simple and accuracy will be poor

Parameter Selection

- How should we set the minbucket parameter?
- One way is to select the value that gives the best testing set accuracy
 - · This is not right!
- There are two standard ways of setting parameter values:
 - · Validation set
 - · Cross-validation

Universal AI 12

Complexity Parameter

- One way to limit the size of our tree is with minbucket
- There is another option called the complexity parameter (**cp**)
- Like Adjusted R²
 - Measures trade-off between model complexity and accuracy on the training set
- Smaller cp leads to a bigger tree (might overfit)

Predictions from CART

- At each leaf of the tree, we have a bucket of observations, which may contain both outcomes (i.e., affirm and reverse)
- For each leaf, we can compute percentage of points in one group
 - Example: 10 affirm, 2 reverse $\rightarrow 10/(10+2) = 0.867$
- We use a threshold to obtain a prediction
 - Default threshold of 0.5 corresponds to picking most frequent outcome

Universal AI 14

Random Forests

- · Designed to improve prediction accuracy of CART
- Works by building a large number of CART trees
 - · Makes model less interpretable
- To make a prediction for a new observation, each tree "votes" on the outcome, and we pick the outcome that receives the majority of the votes

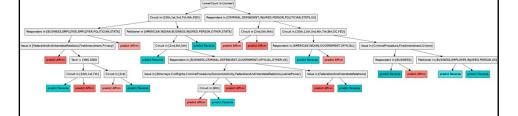
Building Many Trees

- 1. Each tree can split on only a random subset of the variables
- 2. Each tree is built from a "bagged"/"bootstrapped" sample of the data
 - · Select observations randomly with replacement
 - Example original data: 1 2 3 4 5
 - New "data":
 - 1. 23125
 - 2. 31451
 - 3. 44215

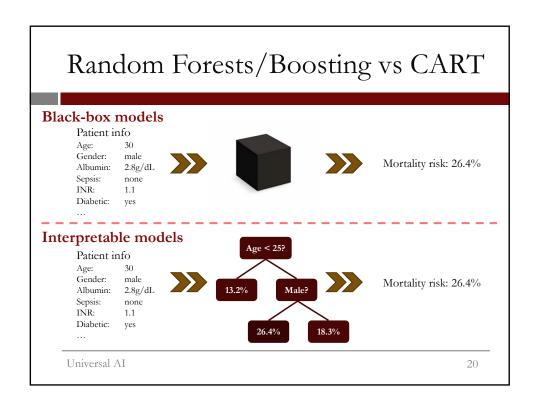
Universal AI 16

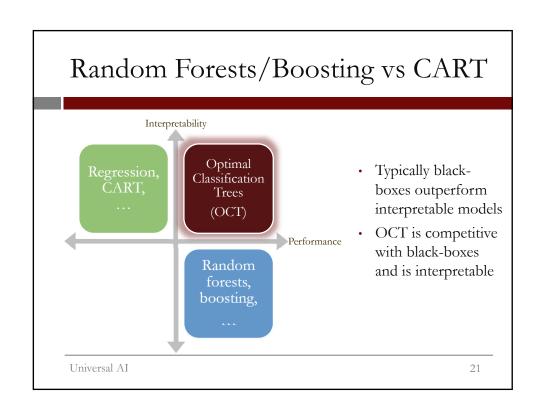
Random Forest Parameters

- · Minimum number of observations in a subset
 - In R, this is controlled by the nodesize parameter
 - Smaller nodesize may take longer in R
- Number of trees
 - In R, this is the ntree parameter
 - Should not be too small, because bagging procedure may miss observations
 - · More trees take longer to build


Gradient Boosted Decision Trees

- Similar to Random Forest, addresses limitation of CART by mixing many trees
- Random Forest trains trees independently and averages the result
- Boosting trains trees **sequentially** where each tree is trained to predict the mistakes of previous trees
- · Many good libraries: XGBoost, LightGBM


Universal AI 18


Random Forests/Boosting vs CART

- CART after validation:
 - Test set accuracy: 54.6%, test set AUC: 0.619

- Black box after validation:
 - Test set accuracy: 61.0%, test set AUC: 0.648

Optimal Trees

- CART's greedy training means splits are only are only locally-optimal, overall tree could be far from optimal
- We have developed a new method for finding optimal decision trees:
 - Bertsimas and Dunn. "Optimal Classification Trees".
 Machine Learning, 2017
- Our method uses modern optimization techniques to train the entire tree in one step, rather than split-by-split like existing methods

Universal AI 22

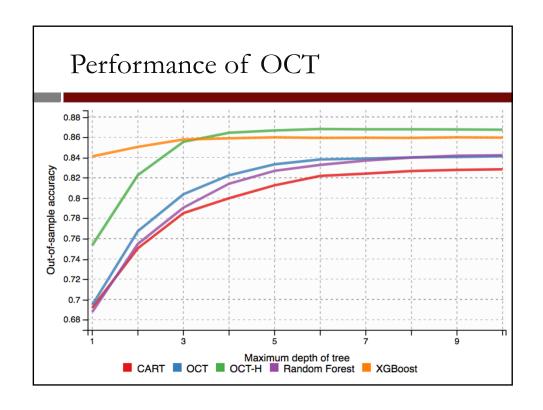
Variants of Optimal Trees

OCT: trees with parallel splits (one variable per split)

OCT-H: trees with hyperplane splits (can use multiple variables per split if beneficial)

Universal AI

4.5

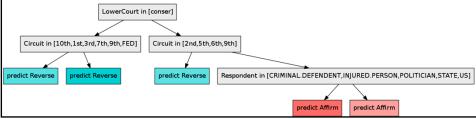

4.0

4.0

5.5

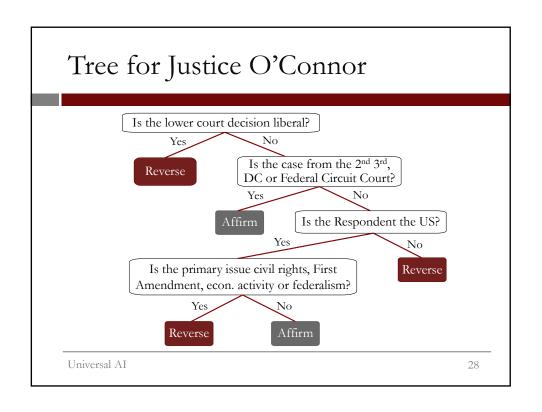
Sepal Length

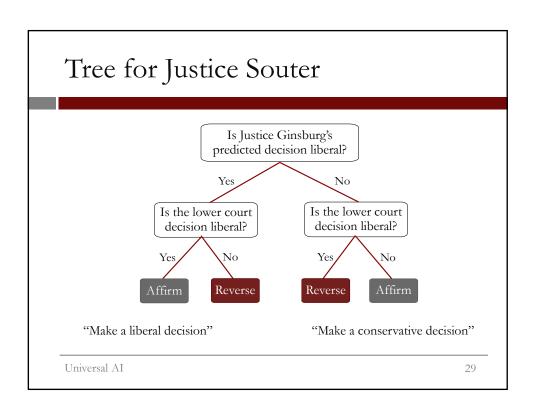
23


Summary of Optimal Trees

- Practitioners often have to choose between interpretability (CART) or performance (random forest)
- Optimal Trees is a new method that maintains interpretability but delivers state-of-the-art performance

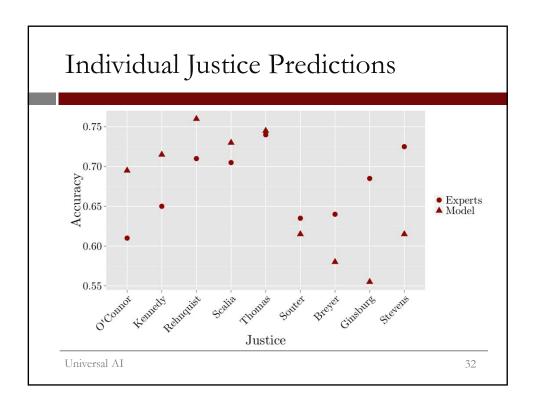
Random Forests vs CART vs OCT


- CART after validation:
 - Test set accuracy: 54.6%, test set AUC: 0.619
- Black box after validation:
 - Test set accuracy: 61.0%, test set AUC: 0.648


• OCT after validation: test set accuracy: 63.8%, test set AUC: 0.670

Martin's Model

- Used 628 previous SCOTUS cases between 1994 and 2001
- Made predictions for the 68 cases that would be decided in October 2002, before the term started
- Two stage approach based on CART:
 - First stage: one tree to predict a unanimous liberal decision, other tree to predict unanimous conservative decision
 - If conflicting predictions or predict no, move to next stage
 - Second stage consists of predicting decision of each individual justice, and using majority decision as prediction


The Experts

- Martin and his colleagues recruited 83 legal experts
 - 71 academics and 12 attorneys
 - 38 previously clerked for a Supreme Court justice, 33 were chaired professors and 5 were current or former law school deans
- Experts only asked to predict within their area of expertise; more than one expert to each case
- Allowed to consider any source of information, but not allowed to communicate with each other regarding predictions

Universal AI 30

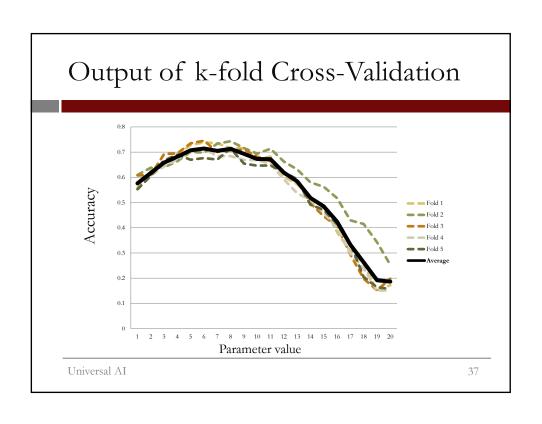
The Results

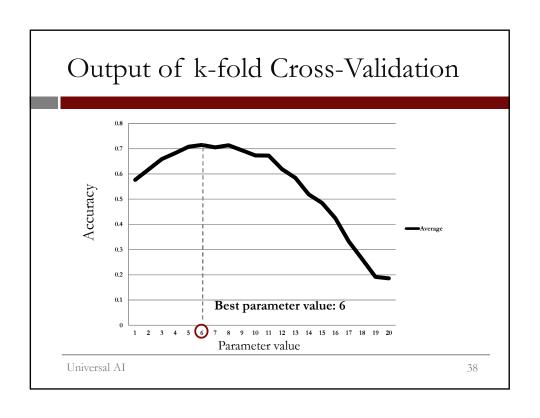
- For the 68 cases in October 2002:
- Overall case predictions:
 - Model accuracy: 75%
 - Experts accuracy: 59%
- Individual justice predictions:
 - Model accuracy: 67%
 - Experts accuracy: 68%

The Analytics Edge

- Predicting Supreme Court decisions is very valuable to firms, politicians and non-governmental organizations
- A model that predicts these decisions can be more accurate and faster than experts
 - CART model based on very high-level details of case beats experts who can process much more detailed and complex information

Cross Validation


This is another approach to selecting good parameter values.


Universal AI 34

K-fold Cross-Validation

- One way to properly select a parameter's value is to use k-fold cross-validation
 - Given training set, split into k pieces ("folds")
 - Use k-1 folds to estimate a model, and test model on remaining one fold ("validation set") for each candidate parameter value
 - Repeat for each of the k folds
 - For each candidate parameter value, average accuracy over the k folds, or validation sets

K-fold Cross-Validation Graphically • Assume five folds (k = 5) Predict Fol Whole Training Set Universal AI 36

